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An analytical theory of barotropic P-plane vortices is presented in the form of an 
asymptotic series based on the inverse of vortex nonlinearity. In particular, a solution 
of the initial value problem is given, in which the vortex is idealized as a radially 
symmetric function of arbitrary structure. Motion of the vortex is initiated by its 
interaction with the so-called '/3-gyres' which. in turn, are generated by the vortex 
circulation. Comparisons of analytical and numerical predictions for vortex motion are 
presented and demonstrate the utility of the present theory for times comparable to the 
'wave' timescale. The latter exceeds the temporal limit derived from formal 
considerations. The properties of the far-field planetary wave radiation are also 
computed. 

This theory differs from previous calculations by considering more general initial 
vortex profiles and by obtaining a more complete solution for the perturbation fields. 
Vortex trajectory predictions accrue error systematically by integrating vortex 
propagation rates which are too strong. This appears to be connected to higher-order 
planetary wave radiation effects. 

1. Introduction 
There is by now a wide literature concerning the evolution of intense barotropic 

vortices on the P-plane, especially in connection with the theory of tropical cyclones. 
The physics of this evolution (for not very large times) is now clear : the P-plane effect 
creates a secondary dipole circulation (the so-called P-gyres) which interacts with the 
vortex and forces it to move along the dipole axis. This axis rotates owing to the vortex 
circulation. The sense of this rotation is determined by the sense of the vortex; i.e. 
counterclockwise (clockwise) for cyclonic (anticyclonic) vortices. 

Thus, a cyclonic (anticyclonic) vortex moves northwestward (southwestward) along 
some curved trajectory. Such motion is accompanied by planetary wave radiation 
which, at first, rather weakly influences the vortex trajectory (i.e. for times of the order 
of (PL)-', where P is the meridional gradient of the Coriolis parameter and L is a 
characteristic vortex lengthscale). On times larger than O( PL)-l, the influence of 
planetary wave radiation is not well understood, but probably cannot be neglected. In 
part, this is because of its influence upon the net angular momentum of the vortex. This 
somewhat simplified scheme has been confirmed in the laboratory (cf. Firing & 
Beardsley 1976) and in several numerical experiments (cf. McWilliams & Flier1 1979 ; 
Fiorino & Elsberry 1989; Shapiro & Ooyama 1990; Ross & Kurihara 1992). 

Some related analytical work also has been done. Adem (1956) investigated the 
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initial generation of /?-gyres, for times much smaller than the vortex turnover time. 
Sutyrin (1988, 1989) derived equations governing the joint evolution of the 
axisymmetrical part of an intense initially circular vortex and its /?-gyres. These 
equations are valid for times larger than the vortex turnover time and can be used to 
calculate the vortex trajectory for times of O( PL)-'. 

Some progress was also achieved in the theory of singular monopolar vortices. Since 
the inner structure of such a vortex is fixed and very simple, the equations describing 
its evolution can be solved analytically in some cases. Bogomolov (1977, 1979, 1985) 
investigated the initial motion of a non-divergent point vortex on the rotating sphere 
and Reznik (1990, 1992) suggested a theory of singular vortices on the /?-plane. One of 
the results of this theory is the analytical description of the evolution of an intense 
divergent singular vortex valid on times much larger than the turnover time. Reznik & 
Kravtsov (1994) developed the analogous theory for the non-divergent singular 
vortices on the /3-plane and obtained simple analytical expressions for vortex trajectory 
and the time-dependent /?-gyres. 

The analytical description of a distributed vortex is more complicated than that of 
a singular vortex, because of the inner structure of the former. One difficulty is that the 
vortex trajectory cannot be uniquely defined; rather, it must be chosen and in principle 
depends on this choice. For example, we may choose to track the point of maximum 
pressure, the vorticity extremum or some fluid particle within the vortex core. The 
tracks of these points may differ from each other. Also, the equation for the /?-gym, 
although linear, is generally too complicated to solve analytically. Some special cases 
have proven to be tractable; Sutyrin & Flierl (1994), for example, successfully 
considered a vortex with piecewise-uniform potential vorticity. 

In spite of these difficulties an analytical theory of barotropic B-plane vortices, based 
on an approximate equation, has been proposed by Smith & Ulrich (1990) and Smith 
& Weber (1993). In order to proceed, however, they simplified the dynamics of the 
/3-gyres, employed some ad hoc assumptions and used an iterative procedure (see 
below). Nonetheless, comparisons with numerical results have demonstrated that their 
theory accurately predicts vortex trajectories and the /3-gyres for times t 5 (BL)-l. 

We present here an analytical theory of intense non-divergent barotropic vortices on 
the /?-plane. This theory differs from the those above in that it considers distributed 
vortices, as opposed to singular vortices and is not restricted to the uniform potential 
vorticity distributions of Flierl and Sutyrin. Finally, we have been able to avoid the ad 
hac approximations made by Smith and collaborators. Section 2 contains a statement 
of the problem. The solution for the p-gyres is derived in $ 3 .  In $4, various definitions 
of the vortex trajectory and velocity are discussed. Asymptotic regimes valid at large 
distances from the vortex centre and at large times compared to the vortex turnover 
time are investigated in $5. Section 6 contains a comparison of the theory with 
numerical experiments, and the circulation in the far-field caused by planetary wave 
radiation from the vortex is described in $7.  A discussion of the results concludes the 
paper. Some useful formulae and an analytical demonstration of the linear fplane 
stability of an arbitrary barotropic vortex to mode-1 perturbations are given in 
Appendices A and B. 

2. Governing equations 

potential vorticity equation (cf. Pedlosky 1986) 
We consider the initial value problem governed by the well-known barotropic 
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where $ denotes streamfunction ; x ,  y eastward and northward coordinates 
respectively; t time; V2 the Laplacian operator and J the usual Jacobian operator. We 
take as an initial condition for (2.1) an axisymmetrical localized vortex, i.e. 

where r = (x2+y2)$. 

of p, the vortex (2.2) moves along some trajectory I = (X(t) ,  F(t)), with a velocity 

$(t = 0) = $0(r), (2.2) 

If ,8 = 0, the initial state (2.2) is a stationary solution of (2.1). Under the influence 

u= (U(t), V( t ) )  = --x - Y (,4 -, :t -) 
and also excites planetary waves. In the moving coordinate system defined by 
x' = x-X( t ) ,  y' = y-  Y(t), (2.1) takes the form 

av2$ av2+ a$ 
at ax ay ax 

~- a"' U-- V-+p-+ J($,V2$) = 0, 

where primes are omitted. Since the vortex motion is caused by /I, the second, third and 
fourth terms in (2.3) must be of the same order, whence it follows that the velocities 
U,  V scale as 

where L is a vortex lengthscale. 
u, = pL2, 

Denoting the scale of the vortex swirl velocity by U,, the streamfunction is expected 
to scale as $* = U,L and the eddy turnover time as T* = L/Uv.  Thus the non- 
dimensional form of (2.1) is 

where a = U J U ,  = pL2/Uv.  

3. Intense vortex structure 
Consider now the case of an intense vortex, defined by 

a = u*/uv .g 1. (3.1) 
The solution to the problem (2.2), (2.5) and (3.1) is sought in the form of an asymptotic 

u = U0(t) + aU,(t) + . . . (3.3) 
(cf. Peng & Williams 1990). Substitution of (3.2) and (3.3) into (2.2) and (2.5) gives 

!h1(t = 0) = 0, g2(t = 0) = 0. (3.4c, d )  
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Equations (3.4a, c) are non-constant, but nonetheless linear, equations ; therefore, 
their solution can be represented in the form 

where $1 and $2 satisfy 
(3.5) 

3 . 6 ~ )  

with initial conditions 

The solution to (3.6h, c) is readily found and has the form 

$i(t = 0) = 0, i = 1,2. ( 3 . 6 ~ )  

where 

( 3 . 7 4  

(3.7b) 

To solve (3.6a) we employ polar coordinates ( r ,  B), yielding 

where the prime denotes differentiation with respect to r .  The general solution to (3.8) 
involves a homogeneous and an inhomogeneous part. The former can be neglected in 
view of the initial condition. It is a simple matter to show that the inhomogeneous part 
involves only the sum of the two dipole components, 

&1 = A(Y,  t )  sin B + B(Y, t )  cos B, (3.9) 
where the amplitudes A and B satisfy the equations 

&':A 1 
at r 

+-(BV;$I-$;V;B) = 0 (3.10a) 

(3.10b) 

d2 I d  1 
and V; = p + ; & - p .  

It is convenient to reduce (3.10a,b) to one equation for the complex amplitude 
C = A+iB: 

(3.1 1 )  
aV:C i 

a t  r 
+-($hViC-CVq$A) = -i$h. 

Integrating (3.11) with respect to r from 0 to r and using the identities 

(3.12a) 
1 

$; v; c- cv; $;, = ;[Y($h C' -  c$;)]', 

(3.12 b)  
1 
r2 

V; C = y [ r ( r C ' -  C)]' 
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(3.13) t J: a 
we obtain -(rC'-C)+i(C'i&--C$;) = -- r2?jr',dr. 

at 

When integrating we took into account that 
C = C'(0)r for r + O ,  (3.14) 

which follows from the regularity of V C  and V$, at r = 0. (An analysis like the abovc 
can also be used to demonstrate the f-plane stability of vortices to low mode 
perturbations and is presented in Appendix B.) 

Dividing by r2 then yields 

where 

(3.15) 

(3.16) 

the primes again denoting differentiation with respect to r .  

transform variable 
Equation (3.15) is now Laplace transformed, and (3 .6~)  is used, to yield a time 

cl(P) = epPtC1(r, t) dt. (3.17) 1: 
The resulting equation is easily solved to obtain 

(3.18) 

where R(P) is an arbitrary function of the transform parameter P. This function can 
be found from the condition of boundedness of C, (and, consequently, el) for r + a. 
Assuming that y%k decays sufficiently rapidly as r + a, e.g. 

$; d O(l/r2), r+  m, (3.19) 

the integral in (3.18) converges for large r and we have 

Thus 

(3.20) 

(3.21) 

The solution C can be readily obtained by applying the inverse Laplace transformation 
to (3.21) and has the form 

C = A + iB = r [it 1; Fepigzt dr - $,I t ( ITm F eci8zt dr) dt] . (3.22) 

It is useful also to calculate the quantity 
00 

V; C = V; A + iV; B = r(epi$zt - 1) - Vf $; [ i( 1 Fe-'$zt dr) dt. (3.23) 
O r  

Thus, by virtue of (3.9, (3.7a) and (3.9) the O(a) streamfunction and vorticity fields 

$, = ( A  + Y, $;) sin B + ( B  + 2, $3 cos 8, (3.24 a) 
(3.24 b) 

respectively, where A and B are given by (3.22). According to (3.24a, b), the O(a) field 
is a sum of two dipoles with mutually perpendicular axes and amplitudes depending on 

are equal to 

V2$, = (V: A + Vi @;) sin 8 + (V4 B+ X, V; $3 cos 8, 
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time and distance from the vortex centre. This sum is thus also a dipole, but with a 
time-dependent axis, amplitude and structure. The vortex moves owing to its 
interaction with this dipole. We now calculate the trajectory of the vortex due to these 
interactions. 

4. Definition of vortex trajectories and velocities 
The velocity and, consequently, the trajectory of the vortex is not unique, but rather 

is subject to the choice of a characteristic point of the vortex, which we subsequently 
track. It is natural to consider the motion of the points corresponding to the extrema 
of relative and potential vorticity and of the streamfunction. 

4.1. The relative vorticity extremum 
The relative vorticity of the vortex to O(a2) is 

where c0 = V2$o(r). In the coordinate system whose origin coincides with the relative 
vorticity extremum, we have 

6 = 6&) + aV2$,(r, t) ,  (4.1) 

vCl,=, = Ci VrI,=o + o~v(V~$,)l ,=~ = 0. (4.2) 

Let the initial field @,(r) be regular at r = 0 up to the third derivative. Thus, 6i,,=o = 0 
and it can be readily found from (4.2), (3.24b), and (3.23) that 

PP,+ig = [t(~~Fe-iq2tdr)dt--(e'@oot- G " 1 1 (4.3 a)  

(4.3 b) 

(4.3 c) 
GO sum V$+iu$  = yg+ikg = t Fe-i'Pzt&+i&e-i@iot, 

where $;o = $XO>, c;o = 6;@) 
and the overdot implies a time derivative. 

Formulae (4.3) determine the trajectory and velocity of the relative vorticity 
extremum; it can be verified that they coincide with those calculated by the method 
proposed by Sutyrin (1988). 

4.2. The streamfunction extremum 
To obtain the velocity and trajectory of the streamfunction extremum, it is necessary 
only to substitute $ for 5 in (4.1) and (4.2). The resulting trajectory and velocity are 
given by the formulae 

(4.4a) 

(4.4 b) 

4.3. Fluid particle trajectory and velocity 
One can also define the trajectory and velocity of the vortex by tracing the path of a 
particular fluid particle in the vortex core. For example, typhoons are often modelled 
using the azimuthal velocity profile. 

yZ = AreUr (4.5) 
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(cf. Chan & Williams 1987; Fiorino & Elsberry 1989). Obviously the corresponding 
relative vorticity 

has a weak singularity at r = 0, because 05 is not continuous at this point. Note that 
the relative vorticity is maximal at r = 0 but (4.3~4 b) of $4.1 are inapplicable since 
{h  l r = o  + 0. (Note, however, that (4.44 b) for the streamfunction extremum remain 
valid.) 

Potential vorticity conservation shows that the above singularity always moves with 
its initial parcel fluid. This implies that 

<= A(2-r)e-r (4.6) 

91 z -u ,  = v  (4.7) 
?!J r=o c x  r=o 

in the coordinate system attached to the potential vorticity extremum. From (3.24a), 
(4.7) we have 

whence it follows that 

d -  
- ( & + i Z O ) + i ~ ~ o ( ~ + i 2 = O )  at = 

By virtue of (3.22) 

= S; i$iQJ?, 

where 

(4.9) 

(4.10) 

(4.11) 

Substituting (4.10) into (4.9) we obtain 

Equation (4.7) shows that (4.12a, b) are applicable also for a non-singular vorticity 
field, in which case they describe the motion of the fluid particle initially located at 
r = 0. 

5.  Asymptotic regimes 
5.1. Asymptotics,for r - t  co, t,fixed 

Let us assume that the azimuthal velocity $; decays sufficiently rapidly so that the net 
angular momentum M ,  

tcI 

M =  1 r";dr, (5.1) 
JO 

is finite. This requires that 

and thus the function F in  (3.16) is equal to 

It follows that 

$; 4 1 p 3 ) ,  r +  a. 

F=M/r3+0(l/r3),  r+m. (5.3) 

(5.4) 
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Using (5.4) we readily obtain the asymptotic expression for C: 

. M  
2r 

C = A+iB = i - t+o( l / r ) .  (5.5) 

One can see from (5.5), ( 3 . 2 4 ~ )  and (5.2) that the behaviour of streamfunction at 

A = o( l / r ) ,  B = tM/2r,  r+ 03, ( 5 . 6 ~ )  

i.e. the cosine dipole in ( 3 . 2 4 ~ )  decays much more rapidly than the sine dipole for large 
r. For M = 0 we have 

A = o(r<), B = tr&+o(r&), r+ cn, (5.6b) 

large r is determined by the net angular momentum M.  If M + 0 then 

where (5.7) 

It is seen that in this case the correction field decays approximately as the 
streamfunction $,, for r+ cn, i.e. much more rapidly than for non-zero angular 
momentum M .  This is in agreement with the numerical results of Shapiro & Oyama 
(1990) which showed that the vortex with zero M stays much more localized than in 
the case of M =k 0. Note also that both dipole components in ( 3 . 2 4 ~ )  decay identically. 

It is important to note that by virtue of (3.23), the relative vorticity Vz@l is always 
localized, as its decay is governed by $; and V;$h, rather than M .  

5.2. Trajectory and velocity of the vortex for t + 00 

We now consider the behaviour of the vortex trajectory and velocity at times much 
larger than the characteristic turnover time T* (see $2). It is seen from (4.3), (4.4) and 
(4.12) that vortex trajectory is determined by the integral 

and, therefore, to calculate the trajectories and velocities for large times we have to 
estimate this integral for t + 00. Details of these calculations are given in Appendix A 
and here we give only the final results. It is important to note that the trajectories and 
velocities (4.3), (4.4) and (4.12) of the various characteristic points of the vortex 
accurately track each other for large t. 

The case of non-zero M 
Not surprisingly, the vortex motion at large times depends strongly on the value of 

M .  If M =t= 0 then the value of the integral (5.8) is strongly affected by the periphery of 
the initial vortex state ~ o ( r ) ,  which agrees with the conclusions, based on numerical 
experiments, of Fiorino & Elsberry (1989). Below we consider some typical and 
frequently applied decay laws for $o at larger r. 

(i) Algebraic decay 

$0 M a/@,  r+ 00, (5.9) 
where K > 2 and a is a constant. Here, vortex trajectories and velocity are given by 
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where (5.10 c) 

and r represents the standard gamma function. Equation (5.10 a) shows that the vortex 
is always accelerated, with the acceleration increasing for increasing K (i.e. for more 
confined vortices). Since K > 2 the magnitude of the zonal velocity (IDoI) is always 
smaller than the magnitude of the meridional velocity (I To/). The vortex trajectory is a 
straight line, 

m = cot (n:/(K+ 2)). (5.11) 

Note that the slope m becomes large for large K,  meaning that more confined vortices 
move on a more purely meridional path. 

= mro,  with slope 

(ii) Exponen tial-algebraic decay 
$o = arUe-', r + w ,  

where a and u are constants. In this case 

(5.12) 

V,+iUo =- y(lntt -+i- l::d , - &+iXo ~ = - "( -+i- t2 (5.130, b) 
4 lnZt ln3t . 

The vortex moves, and accelerates, along the trajectory 

(5.13 c) 

Such a curve approaches purely meridional motion for large time. 

(iii) Gaussian-algebraic decay 
$o = arUe-r2, r +  03. (5.14) 

Vortex motion here is analogous to the preceding case, but is slightly faster: 

The vortex trajectory has the form 

(5.1 5 c) 

which is steeper meridionally than (5.13~). 
It is important to note that in all the above cases, the general direction of vortex 

motion is determined by the sign of the net angular momentum M ;  cyclones (A4 > 0) 
move to the north-northwest and anticyclones (A4 < 0) to the south-southwest. 

The case of vanishing net angular momentum; M = 0 
It readily follows from (5.1) that if M = 0, number of points, rig), K = 1,2, . . ., exist 

such that 
$i(riK)) = 0. (5.16) 

The number of points satisfying (5.16) depends on the profile and can be either finite 
or infinite. It can be shown by stationary phase analysis (see Appendix A) that the 
value of the integral (5.8) is largely determined by the contributions around the points 
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in (5.16). Suppose for simplicity that the profile q2(u )  has only one point uo satisfying 
(5.16). Then 

where (5.17 c) 

It readily follows from (5.17b) that the vortex with M = 0 tends to move along a 
widening spiral curve for large t (cf. Willoughby 1992). 

Finally, note in the above formulae that the form of the vortex trajectories at large 
times independent is of M ,  although the vortex propagation velocities are proportional 
to it. 

5.3. Asymptotics of the streamfunction artd vorticity for t+ 03, rfixed 
By virtue of (3 .24~)  the behaviour of the O(a) streamfunction $l is determined by the 
function 

Recall that 

Yo + iX, = [ t (1; F e-'@Z* dr) dt + S(t), 

(5.18) 

(5.19) 

where the function S(t) depends on the definition of velocity (cf. (4.34, ( 4 . 4 ~ )  and 
(4.12~)). After some algebra, (5.18) and (5.19) yield 

Consider now the form of the perturbation streamfunction in a system attached to 
the moving vortex, i.e. 

$? = $i r ,+U,rs in8-~ucos0  
= (A+  q$;+ U , r ) s i n ~ + ( ~ + ~ ~ $ ~ - V , r ) c o s O .  (5.21) 

The behaviour of ~y thus is determined by the function 

Cl(r, t) = C-ir(K+iUo), 
which is equal to 

(5.22) 

a s  
Cl(r, t) = -itr Fe-'+Xt du + $; t (lFe-igzt dr) dt -irx+ 9; S.  (5.23) 

0 

The relative vorticity V2$] of the correction field is determined by the quantity Vt c, 
which equals 

V; = Y( eciTzt - l)+V;? $;I t (r Fe-'@ztdu)dT+ SV: $b (5.24) 

by virtue of (3.23) and (5.19). Note that Vz$, = Va$y and with these definitions we can 
write the equation defining $1 (i.e. (3.44) as 

0 0  

(5.25) 

at a fixed r for t+ co. 

a 
-V2$y + J(Vz+y, $& + J(ll.y, V2$o) + = 0. 
a t  

We now consider the behaviour of the functions C, and V; 



Analytic theory of barotropic vortices on the p-plane 31 1 

First, suppose g2, 3; do not vanish, which of course is possible only if the net angular 
momentum M differs from zero. After some algebra we have 

‘ F  dS  
dt C, = - $; Jo dr -ir-+ S$; + O(t-’), 

+(S$h)’+O(t-l), 

(5.26) 

(5.27) 

F V : c =  r(e@At +SV,2$;+O(t-l), (5.28) 

(5.29) 

for t+ GO. It readily follows from (5.26), (5.27) and (5.28) that the streamfunction $? 
and the velocity field in the moving coordinate system are bounded for t + GO although 
the vortex increases as t+ GO (see $5.2). 

Thus, the J($y,  V2$J term in (5.25) remains bounded for large t ,  which implies that 
the third, fourth and fifth terms in (3 .4a)  approximately compensate each other. 

The relative vorticity, Vz$l, is also bounded for t i ;  00 (see (5.28)); however, its 
spatial derivatives grow proportionally to t by virtue of (5.29). This implies that the 
inhomogeneous terms in (3 .4b) ,  which create the next-order correction $2, grow with 
time. Thus, in the case M .t; 0, our theory is valid for 

at -=3 1, (5.30) 

i.e. for times much smaller than the ‘wave’ timescale l/pL. 
In the case of M = 0 the asymptotics for t -3 GO become somewhat more complicated. 

For r > r,,, where r,, is the first zero of g2, the functions C,, C ;  and V; 6 behave as ti. 
However, in the central part of the vortex, for r < Y,, the functions C,, Ci and V: k are 
also bounded and, therefore, the streamfunction and velocities in the moving system 
remain finite there also. Thus, it follows from our theory that for sufficiently large times 
the vortex (i.e. for r < ro) is simply advected by the flow induced by the P-gyres. In the 
far field (i.e. r > r,,) the flow strengthens and broadens with increasing time. This result 
is well confirmed by numerical experiments (cf. Fiorino & Elsberry 1989, and the next 
section). 

(v: k) /  = ir FVf  $; - ‘$2 $; e-iGz t + o(1) 
$2 

6. Numerical verification 

problems employing 
As a test of the analysis, we have performed a sequence of numerical initial value 

(6.1) 

subject to the initial condition (2.2) and the boundary conditions of no normal flow 
and free-slip (i.e. $ = 0 and Vz$ = 0 on the boundaries). Equation (6.1) is effectively 
(2.1) (save for the presence of viscosity v). The solutions of (2.1) were obtained using 
finite difference techniques and a closed domain. The Jacobian was computed using a 
fourth-order-accurate energy- and enstrophy-conserving Arakawa formulation. The 
viscous parameter v was assigned a constant value over the greater part of the domain. 
For the 10 grid points nearest the boundaries, its magnitude was ramped up by a factor 
of 9. This combination of closed boundaries and viscosity had the effect of reducing the 
impact of wave radiation and reflection. 

a 
-V2$+ J($, V’$+~J;) = V * V V V ~ $  
at 
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Our solution method consisted of solving the vorticity equation for the stream- 

where, at a given time level, q was known. The inversion was obtained by sine 
transforming (6.2) in one spatial dimension, solving the resulting tridiagonal matrix 
equation, for each wavenumber, directly and inverse transforming the result back to 
the physical space domain. The sine transform was chosen in view of the boundary 
conditions mentioned above. The result of this procedure was used to move the model 
state forward. Time stepping was performed by the leapfrog technique with averaging 
of adjacent time levels every 100th time step to suppress computational mode 
instability. Viscous effects were lagged one time step. 

Most of our experiments were conducted with a grid spacing of 10 km, a time step 
of 900 s and a value of the viscosity (in the centre of the domain) of lo6 cmz s-'. The 
total domain size was 2560 x 2560 km. A series of experiments has been conducted in 
which the values of above parameters were varied, and have demonstrated that none 
of the results to be reported here depend upon our particular choices. 

The discrete extrema in potential vorticity, vorticity and streamfunction were located 
in the numerical grid at each time step. In order to locate the absolute extrema when 
it was between grid points, a two-dimensional parabolic profile was fit by a least- 
squares method toAhe 3 x 3 matrix of values surrounding the extrema. Thus we 
obtained numerical predictions for the extrema value and extrema trajectories, which 
were subsequently stored for comparison with the theory. 

The theoretical predictions for the extrema trajectories were obtained by numerically 
evaluating (4.3), (4.4) and (4.12). These in turn required computing integrals of the 
vortex streamfunction over the infinite domain. This was performed by breaking the 
integral into a near-field and a far-field part, where the break was made typically at a 
radius of 10 eddy lengthscales. The far-field integral was then transformed to a finite 
domain by use of the variable l/r. All integrals were computed according to Romberg's 
technique to at least an accuracy of 1 part in 10000. 

It was found from both the numerical solutions of (6.1 j and from the evaluations of 
the theoretical formulae that the differences in the various extrema trajectories were 
insignificant. Therefore, we will show here only comparisons between the numerical 
and analytical results for the streamfunction extrema. 

6.1. Gaussian vortices 
Figure 1 compares the trajectories of a Gaussian vortex, whose profile is given by (5.14) 
with u = 0. The dimensional characterization of this vortex was chosen crudely from 
oceanic considerations, i.e. it corresponds to a vortex of maximum swirl speed of 200 
cm s-l at a radius of 600 km. As such, these parameters represent a stronger eddy than 
is typically observed. We have performed experiments for weaker eddies ; the results 
shown here are the most restrictive with respect to the length of time for which the 
theory is adequate. The turnover timescale for this eddy is approximately 8 hours 
(t day), while the associated wave timescale is (PL)-l w 9.6 days. The corresponding 
value of parameter ct = pL2/ V is 0.035, so the vortex is well suited for the theory. The 
marks on the trajectories correspond to time intervals of one day, from which it is 
seen that the quantitative comparison is quite acceptable up to the wave timescale. 
The error in predicted position after 9 days is roughly 30 % in meridional (- 94 km us. 
- 74 km) and 20 YO in zonal (- 55 km us. - 45 km) displacement, with the theoretical 
prediction being consistently too large. These results are surprisingly good as the 
theory is meant to hold only for times short compared to the wave timescale. 
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FIGURE 1. Gaussian vortex trajectory test. Time intervals of a day are indicated. The theoretical 

trajectory is marked by circles and the numerical trajectory by crosses. Sixteen days are shown. 

It is also interesting that the structure of the trajectory is well represented by the 
theory, even if the amplitude of the displacement is off. This appears in figure 1, where 
it is evident that the direction of the theoretical displacement accurately predicts the 
model displacement. 

A major reason for the discrepancy also emerges from the computations. The theory 
assumes = k0(r), thereby neglecting any loss in amplitude of the mean-state vortex. 
On the other hand, a significant wave field develops and the potential vorticity field in 
the vicinity of the eddy is warped considerably; both perturbations draw their energy 
from the vortex. The numerical solutions of (6.1) include these processes and thus 
the vortex amplitude decreases over the course of the experiment. For example, the 
maximum streamfunction amplitude from the numerical experiment in figure 1 has 
dropped by 20% by day 9. 

The mean-state vortex feeds directly into the trajectory speeds (cf. (4.4)). The 
retention of a ' too-strong ' vortex leads naturally to the theory predicting displacements 
which are too large. The shapes of the trajectories are less sensitive to vortex amplitude 
(cf. (5.15)), which provides a partial explanation for why the trajectory structure is well 
represented. 

6.2. Hurricane proJiIes 
W P  haw= n l c n  r n m n a r d  traiprtnripc h a c d  nn the r l a c c i r a l  hiirriranp nrnfilp whncp . . 1 **I. v l l U V  v""'y..'-4u c'uJ""..""Lvu "UUVU "I I  bLLV W l U V V l W U .  l l U I I l W W l l W  y"""'", . . l l"VY 

swirl velocity v is given by v = Arepr (see figure 2). The physical parameters of this 
vortex were consistent with a swirl speed of 20 m s-l at a radius of 100 km. The vortex 
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FIGURE 2. Same as figure 1, except that a hurricane profile is used. 

comparison in figure 2 shows an acceptable agreement out to about 3 days 
(displacement errors of 28 % meridionally and 26% zonally). During this time, the 
vortex has moved a net distance of - 520 km (- 5-6 lengthscales), which differs 
considerably from the previous case, where the vortex moved N 1.5 eddy scales before 
the errors became larger than - 30%. Thus the present theory yields useful 
information in a wide variety of circumstances. 

Again, the theoretical predictions are too large and, again, this difference can be at 
least partly ascribed to the unrealistically strong theoretical eddy. By 2; days, the 
numerical hurricane streamfunction has decreased in amplitude by 12 YO, a change 
unaccounted for by the theory. 

It is also interesting that the trajectory shape is well represented by the theory. This 
applies even to the reproduction of the gentle ‘cusps’ which appear. Note that in both 
tracks such cusps are initially absent, and then grow in magnitude with increasing time. 

6.3. M = 0 
Both previous profiles possessed considerable net angular momentum, M = ss ry? dr. 
We now present the results of a comparison of the theory with a profile characterized 
by M = 0. Specifically, we used 

@ = a(2 - ~ * / r : )  e-rz’T:, (6.3) 

where the formula is presented dimensionally. This vortex is the weakest discussed so 
far, corresponding to a swirl speed of 100 cm s-l at 60 km. Many of the formulae 



Analytic theory of barotropic vortices on the P-plane 315 

80 

I0  

60 

50 

Y (km) 40 

30 

20 

10 

0 
- 

x (km) 
FIGURE 3. Same as figure 1, except a profile with M = 0 is used. 

depend strongly on M for their behaviour (cf. (5.13)), thus this comparison provides 
a strong test of the utility of this theory. 

The trajectory comparisons are given in figure 3 and confirm this experiment as the 
most successful of any of the tests. This is particularly interesting as the eddy timescale 
is roughly 1.2 days, so a % 0.13. This is the largest value of a shown here, so the theory 
should be the least applicable. Figure 3 displays the results of 16 days of numerical 
integration, after which time the meridional displacement error is - 10 % (- 76 km us. 
- 69 km), while the zonal displacement error is much worse (90 %). This latter measure 
is slightly misleading as the net zonal displacement is small (- 36 km). Perhaps it is 
more telling that the trajectory shape is remarkably well modelled. This bears on the 
question of zonal error, as the zonal displacement actually curves back on itself and 
passes through zero after about 9 days. 

Thus the predictions of the present theory with respect to vortex trajectory are born 
out by numerical experimentation. The notable results to emerge here are that the 
theory holds up to times comparable to a wave timescale, in spite of the formal 
restriction to much smaller times, and the trajectory shapes are quite well captured for 
even longer times. The best comparisons are found for M = 0. This is in keeping with 
the theory, whose far-field predictions improve considerably in this case. A source of 
theoretical error appears to be its lack of amplitude loss, which results in the theoretical 
predictions being too large. 
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7 .  Far-field radiation 

(3.4b) in this region by 
Since $o, V%,k0, and V2$] decay rapidly for r --f m (see § 5. I), one might approximate 

However, if the net angular momentum M is different from zero, then it follows from 
(5.5) and ( 3 . 4 4  that 

Hence, $2 has an infinite energy and enstrophy, which is physically unacceptable. 
The difficulty here is that for non-zero M ,  the expansion (3.2) is not valid throughout 

the plane. Specifically, the non-divergent planetary waves outside the vortex can move 
with arbitrarily large group velocities ; hence far-field radiation cannot be neglected, 
even for times much smaller than the 'wave' timescale (PL)-l (see also Reznik 1992). 
Equivalently, in the proper expression of the far-field dynamics, terms like aV2$Jat 
and a a$,/ax are really of the same order. Consideration of these points suggests that 
the expansion for the far-field streamfunction has the form 

$2 = -&Mt2cos2B for r +  co. (7.2) 

$ = a2$,(X, Y ,  t) + a3?/4(X, Y, t )  + . . ., (7-3)  

where (X, Y )  = a(x,y). Such a dependence on the 'slow' variables X, Y is due to the 
fact that only sufficiently long planetary waves, with wavelengths 2 l / a  can approach 
the far-field on times t < l / a .  

Thus, the plane is divided into two regions: Region I (r - 1) in which the 
representation (3.2) is valid, and Region I1 (r N l / a )  in which the streamfunction is 
represented in the form (7.3).  The expansions (3.2) and (7.3) must be joined in an 
intermediate region by using the method of asymptotic matching (e.g. Van Dyke 1964). 

in (7.3) is obtained in a manner similar to that in Reznik (1992). 
Specifically, substituting (7.3) into (2.5) and (2.2) we obtain the equation 

The solution for 

where 

a?$, a$, 
at ax 

+- = 0, 

and the initial condition 
$llt=o = 0. 

( 7 . 4 4  

(7.4b) 

When deriving (7.4~2) we assume that the initial streamfunction $,,(r) decays sufficiently 
rapidly for large r that $',(r) -g a as r = U(a-'). We also require for large r that $, be 
bounded, i.e. 

where R = ( X 2 +  Y2);. To match the expansions (3.2) and (7.3) for small R, we rewrite 
afi1(r, t) and a2$,(X, Y,  t )  in terms of the intermediate variables 5 = ayx, 7 = d y ,  
0 < y < 1 and let a tend to zero for fixed 4 and 7 (cf. Van Dyke 1964). Taking (5.5) into 
account, we have 

as R+W (7 .4c)  

Mt 
2R 

a$] M al+Y cos 8, (7.5) 
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where R” = ayr.  In order that the analogous limit for a2$,(X, Y, t )  coincides with ( 7 3 ,  
it is necessary that 

Mt 
& l + - ~ ~ ~ ~  2R as R + O .  

The relationship (7.6) constitutes a second boundary condition on 
The solution to (7.4) was obtained by Reznik (1992) and has the form 

where 
G(X, Y,  t )  = - i ( L r l 0  g, J,{2[Rt(u2+cos2~0)]~}du 

R R  [(u2+ 1)(U2+COS2;0)l” 

( 7 . 7 ~ )  

(7.7b) 

The far-field streamfunction does not have a dipole structure, as occurs for $1 in (3.9); 
rather, the far-field solution describes an oscillatory sequence reflecting the dispersive 
wave behaviour of ( 7 . 4 ~ ) .  The function $1 in ( 7 . 7 ~ )  tends to O(r-f) as r + c o  and, 
therefore, the composite uniformly valid expansion for the lowest-order correction 
field $,, of form (cf. Van Dyke 1964) 

has finite energy and enstrophy. Another important property of the far-field solution 
is that it ensures the boundedness of the net angular momentum of the evolving vortex. 
To see this, note that the contribution 

to the net angular momentum due to the correction field (7.8) is finite. (If (7.9) is 
evaluated without taking into account the far-field radiation, the integral diverges 
because of (5.6)). 

8. Conclusions 
We have analytically investigated the evolution of an intense, circular barotropic 

vortex on the P-plane. The proposed asymptotic theory is formally valid for times of 
the order of a few turnover times. In practice, the theory is often accurate for several 
turnover times, as confirmed by the numerical experiments described in $6. For strong 
oceanic and atmospheric eddies the prediction time is of the order of 10 days and 2-3 
days, respectively. Both are comparable to the wave timescale. If M = 0, we have found 
the theory to work well for times greater than the wave timescale. 

This theory differs from the preceding theories by Sutyrin & Flierl (1994), Smith & 
Ulrich (1990) and Smith & Weber (1993). One of the main difficulties of the theory of 
barotropic vortices has been calculating the solution to (3.4a, c), which govern the P- 
gyre behaviour. Sutyrin & Flierl (1994) solved this problem for a vortex with piecewise- 
constant potential vorticity. Smith and colleagues simplified the problem by assuming 
that the sum of the third, fourth and fifth terms in ( 3 . 4 ~ )  was smaller than the rest of 
the terms and could be included in the next-order approximation. Smith & Ulrich 
(1990), for example, supposed that the third, fourth and fifth terms in ( 3 . 4 ~ )  

I I  FLM 269 
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approximately cancel each other, consistent with the numerical experiments which 
suggest that the vortex is simply advected by the p-gyres. Smith & Weber (1993) 
assumed that the spatial gradient of the initial relative vorticity is of the order of p. 

In contrast, we present here the solution of the complete equation (3.4a), subject to 
both (3.4~) and an arbitrary initial vortex. One property of this solution is that the sum 

is generally not smaller than the other terms in (3.4~~).  
We are also able to determine exactly the trajectories of particular points of the 

vortex (e.g. points associated with relative vorticity or streamfunction extrema, or a 
given fluid particle in the vortex core). These various trajectories differ insignificantly 
from each other. The vortex velocity and trajectory, however, depend critically on the 
net angular momentum M .  Anticyclones ( M  < 0) move southwestward and cyclones 
( M  > 0) northwestward. The special case of a vortex with M = 0 moves on a more 
complex trajectory depending on the structure of the central part of the vortex. The 
initial westward motion of the vortex eventually reverses to the east (see also 
Willoughby 1992). 

A third, important distinction is that we have calculated the motion in the far-field 
created by the radiated planetary waves. This region does not significantly influence the 
vortex trajectory for the times considered here (T 3 (PL)-l) but it plays an important 
role in the solution by ensuring the regularity of higher-order approximations and 
boundedness of the net angular momentum. The intensity of the radiated field is 
proportional to M ;  for M = 0 the radiation can be neglected. 

A shortcoming of the present analysis is that at this level of approximation, the 
changes in the vortex structure and intensity are not taken into account. It is therefore 
generally the case that the vortex amplitude used in the theory is larger than that 
realized by the numerical computations; hence, the theory predicts vortex velocities 
which are faster than the numerical vortex. This is a problem which gets worse as time 
progresses, and the numerical vortices reduce in amplitude. To include such effects 
might require analysis of higher-order approximations. This, of course, is not simple 
and is the subject of further investigation. 
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Appendix A 
Let us represent the integral (5.8) in the form 

R = R,+R,, 

here R1=[ Fe-i$%t dr; R, = 1; Fe-ii,t dr (A 1) 

and A is large enough so that the function qZ is monotonic and (5.3) is valid on the 
interval [A, a]. 
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We now estimate R,  as t + co. Let M be non-zero; then by virtue of (5.3) we have 

Let g2 increase monotonically from some negative value to zero. Introducing the new 
variable z = -3, we obtain 

Consider now various large-r behaviours for @,. 
(i) Algebraic decay 

q+o=u/rK, K > 2 ,  r + a .  

In this case $, = - Ku/rK+, and we have 

Introducing the new variable 9 = zt into integral (A 5 )  and using the formula 
(Gradshteyn & Ryzhik 1965) 

where T(x)  is gamma-function, we obtain 

To analyse the case of exponentially decreasing ~ o ,  we use the asymptotic result 

+ O(ln-Y>, 
1 

(rn - 1) In"-' t 

1 
In" t 

d9  = 

d9  = - + O(ln-m-lt) 

as t+m. 
(ii) Exponential decay 

@, x ae-'/r", r+  00. 

For large P we have r3& M - z h3z and, therefore, 

R, M $IA& dz w + M ( L + i z )  ln2t ln3t 

as t-tco. 
(iii) Gaussian decay 

q+,, M [ae-rz] /~,  r +  03. 

In this case, r3Fk x 22 ln2 z for large r, and 

11-2 
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Now let A4 = 0. Then the function F (see (3.16)) can be represented as 

Using (A 14) one can readily show that in the case of algebraic decay for $o (see 

as t+ 03. For the more rapid decay laws (A lOj and (A 12) 

Note that in these cases, the function R, decreases more rapidly than t-i, i.e. 
R, = O(l/ t ) ,  t - t  CO. (A 16) 

R, = O(t-i), t+ CO. (A 17) 

R, = O(tP),  t + a3 (A 18) 

We now estimate the integral R,  for t + 03, The function F is regular for r E [0, A ]  
and, therefore, 

if & =k 0 throughout the interval [0, A]. Let & be zero at some point yo E [0, A],  and, 
for simplicity, suppose this is the only such point. Then the main contribution to R, 
comes from the neighbourhood of the point ro. Evaluating this contribution by 
stationary phase yields 

for t + m .  
It readily follows from (A 7j, (A 1 I>, (A 13), (A 18) and (A 19) that when A4 + 0 the 

integral R,  prevails in R for large t ,  and for M = 0 the integral R, determines the 
behaviour of R. 

Appendix B. Analytical proof of thef-plane stability of an arbitrary two- 
dimensional circular vortex relative to perturbations of azimuthal mode 
number 1 

Let us write the equation for the streamfunction 

7 2  

*+ at  J($, V2$) = 0, 

where $,(r) is the basic state and $(r, 8, t)  a perturbation to this state. Assuming that 
$ = ~ ( ~ ) ~ i ( O - u t )  

and linearizing (B 1) we obtain 

-~v;c+'(lt;v;c-cv~&j = 0. 
r 

The amplitude C must satisfy the boundary conditions 

C = O  at r = 0 ,  

C = o(l/rj, r +  a. 
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Using the identities (3.12a,b) and conditions (B 5 )  and (B 6), we can integrate ( B  4) 
over r and obtain the equation 

c’($‘ - v r )  - C($,” - v) = 0, 

C = A ( & - v r ) .  
whence it follows that 

Obviously, the function C can satisfy (B 5 )  and (B 6) only when CT = 0, i.e. the 
perturbation (B 3) cannot grow (see also Gent & McWilliams 1986). 
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